Stimulation artificielle du neurone

Lorsqu'une cellule nerveuse est excitée électriquement par voie externe, le courant électrique passe de l'électrode positive (anode) vers l'intérieur du neurone et sort par l'électrode négative (cathode). De ce fait, le nerf est dépolarisé à la cathode. Si le potentiel seuil est atteint, il se produit un PA.

Habituellement une hyperpolarisation indésirable se manifeste à l'anode. Cet effet peut être grandement diminué en employant une très large électrode, ou électrode indifférente.

La durée de stimulation nécessaire pour produire un PA au niveau d'un neurone est d'autant plus brève que l'intensité du stimulus est élevée (relation durée de stimulation-intensité de stimulation). L'excitabilité d'un nerf est caractérisée : a) par l'intensité minimale de courant continu qui, pour une stimulation de très longue durée, provoque une réponse (c'est la rhéobase) et b) par la chronaxie, c'est-à-dire la durée pendant laquelle il faut appliquer un stimulus d'intensité double de la rhéobase, pour observer une réponse . La chronaxie est une mesure de l'excitabilité nerveuse, pour laquelle Il n'est pas nécessaire de connaître la valeur absolue de l'intensité de stimulation au niveau de la cellule nerveuse. La chronaxie peut ainsi être déterminée à l'aide d'électrodes cutanées. En clinique, on peut, par exemple, contrôler le décours d'une atteinte musculaire.

L'effet de stimulation du courant électrique provoque, plus particulièrement sous l'effet de tensions élevées, des accidents électriques (électrocution). La quantité de courant ayant traversé le corps constitue un facteur important. Pour une tension donnée, l'intensité du courant est d'autant plus grande que la résistance à son écoulement est faible. Une peau humide est de ce fait bonne conductrice; de même, le contact des pieds nus avec des installations électriques (dans une salle de bain par exemple) est particulièrement dangereux.

Alors que le courant continu ne présente d'effets excitateurs pratiquement qu'au moment de son établissement et de sa rupture, le courant alternatif à faible fréquence (par exemple le secteur. 220 V-50 Hz) peut provoquer notamment une fibrillation cardiaque mortelle. Des courants alternatifs de haute fréquence ( > 15 kHz) ne peuvent pas dépolariser les nerfs et les muscles ; ils échauffent cependant les tissus ; cette propriété est utilisée en thérapeutique : c'est la diathermie.

Nerf et muscle